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INTRODUCTION: Mosquito-borne illnesses are a significant public health concern, both to the 

Department of Defense (DoD) and the broader national and international public health community. 

A thorough grasp of the spatial distribution, patterns, and determinants of these diseases is needed 

to truly understand the threats they impose on public health (Pages et al. 2010). This information, 

when available, is often only at a sub-national to regional scale. Such data fails to meet tactical-

level applications when diseases exhibit high local variation (Rytkonen 2004; Linard and Tatem 

2012). Additionally, finer spatial resolution is also required to target disease burden successfully 

within the population and reduce exposure.  

Previous research has applied spatial downscaling techniques to meet specific epidemiological 

study needs requiring more localized statistics. Examples include downscaling malaria incidence 

rates from regional to urban centers through multivariate regression, hand-foot-mouth disease from 

national to township levels using generalized linear models, and applying hierarchical Bayesian 

frameworks to develop 5 km gridded risk maps of malaria, Plasmodium falciparum (Gething 2012; 

Wang 2017; Altamiranda-Saavedra et al. 2018). While these studies were able to improve coarse-

scale information, they still failed to meet a spatial resolution relevant to tactical-level 

epidemiological mapping applications or the processing time required to support time-sensitive 

operations.  

This technical note (TN) describes a methodology aimed at improving coarse epidemiological 

information to much finer resolutions than achieved in previous studies by combining machine-

learning with open-source, high-performance cloud computing. The result is a 1,000 meter (m) 

gridded raster product that provides a pixel-wise magnitude of risk that can be used directly for 

tactical mapping applications or serve as an input dataset for additional modeling applications. 

DATA AND METHODS: The research presented in this TN focused on dengue, which is a 

mosquito-borne viral disease transmitted by female mosquitoes mainly of the species Aedes 

aegypti. This is the same vector responsible for transmitting chikungunya, yellow fever, and Zika 

infection. Dengue is endemic to the tropical belt and greatly influenced by rainfall, temperature, 

and unplanned rapid urbanization, with the severest form of disease being the leading cause of 

hospitalization and death among children and adults in Latin America and Asia (Brady et al. 2012). 

While oral prophylaxis can prevent mosquito-vector diseases such as malaria, there are no specific 

vaccines or antiviral treatments against dengue fever (Hesse et al. 2017). This lack of treatment 

not only puts local populations at risk, but also can adversely impact military operations. 

Researchers at the Geospatial Research Laboratory (GRL) queried provincial-level dengue 

incidence rates at monthly intervals between 1998 and 2010 from Project Tycho, a global health 
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research database maintained by the University of Pittsburgh (Panhuis et al. 2018). Cambodia 

served as the region of interest (ROI) due to the endemicity of dengue, high local variation in 

disease incidence, and availability of administrative-level statistics. The data were reformatted to 

Comma-separated values (CSV) and spatially joined in Esri ArcMap to the Large-Scale 

International Boundary (LSIB) shapefile (Humanitarian Information Unit 2017).  

Google Earth Engine (GEE) served as the high-performance cloud computing (HPC) environment 

used to process monthly composites of environmental, demographic, and landscape covariates 

between 1998 and 2010. GEE combines a multi-petabyte catalog of satellite imagery and 

geospatial datasets with planetary-scale analysis capabilities that include vector and raster data 

processing, machine-learning classifiers, and time-series algorithms (Gorelick et al. 2017).  

The methods in this research followed spatial downscaling principles found in similar studies that 

include improving coarse population and demographic data, and remotely sensed products such as 

precipitation, soil moisture, and surface temperature (Gaelle et al. 2016; Zhang et al. 2016; Ezzine 

et al. 2017; Pang et al. 2017). The downscaling methods use a statistical algorithm to determine a 

relationship between a coarser response variable and finer spatial resolution covariates. This study 

chose to apply the random forests (RF) regression algorithm because of its demonstrated ability to 

yield higher accuracy compared to linear modeling techniques, albeit more difficult to interpret 

than a traditional linear regression (Couronne et al. 2018). RF is an ensemble classifier that 

constructs multiple de-correlated random regression trees that are bootstrapped and aggregated 

using the mean predictions from all regression trees (Breiman 2001). RF models also provide 

a quantitative measurement of each variable’s contribution to the regression output, which is 

useful in evaluating the importance of each variable concerning dengue prevalence and conditions 

that affect disease vector suitability.  

In this case, the monthly dengue incidence rates previously compiled in ESRI ArcMap serve as 

the response variable. The monthly composites of environmental, landscape, and demographic 

geospatial data serve as the covariates used to develop a response function and model incidence 

rates to a user-defined output pixel size; this study selected 1000 meter output grid cells because 

it met the high-resolution criteria of previous fine-scale epidemiology studies (Sturrock et al. 2014; 

Delmelle et al. 2016). As previously stated, rainfall, temperature, and urbanization significantly 

affect the presence of dengue, primarily due to influences on habitat suitability for the mosquito 

vector, Aedes aegypti. The spatial covariates used in this study included precipitation, land surface 

temperature, normalized difference vegetation index (NDVI), population, land cover and land use, 

and elevation (Table 1, Figure 1).  
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Table 1. Spatial covariate types and data sources used in the 
epidemiological downscale model.  

 

  

Type Spatial Covariate Source

Environmental Precipitation CHIRPS

          sum

          mean

Land Surface Temperature (Day and Night) MODIS

          min

          mean

          max

NDVI* MODIS

Landscape Elevation SRTM

Annual Land Cover Product MODIS

Demography Human Population WorldPop

* Normalized Difference Vegetation Index, measure of vegetation cover and vigor
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Figure 1. Spatial covariates representing environmental, landscape, and demographic 
determinants. 

The spatial downscaling methodology is summarized in the following sequential steps: 

1. Query and download administrative-level monthly dengue incidence rates from Project 

Tycho. 

2. Spatially join dengue incidence rates to Large-scale International Boundaries (LSIB) 

shapefile and upload to Google Earth Engine (GEE) as a table asset. 

3. Query environmental, landscape, and demographic spatial covariates in GEE and 

temporally reduce to monthly composites. 
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4. Select month and year to model. 

5. Create a stratified sampling scheme in GEE and extract observed incidence rates 

(response variable) and environmental/landscape variables (covariates) for the date of 

interest. 

6. Build random forest classifier using regression and run prediction. 

7. Validate regression outputs by aggregating predicted grid cell values to the provincial 

boundary and compare to observed administrative-level incidence rates. 

RESULTS  

Spatial downscale output. Figure 2 provides a visual comparison between the gridded values 

derived from the RF regression downscale model and the observed provincial-level incidence rates 

for June 2010. The gridded output clearly shows a much higher spatial fidelity that meets any 

number of tactical and operational needs. The gridded output can serve as a disease risk map that 

could provide an understanding of the spatial variability in dengue and locations of higher risk to 

exposure. Also, the high-performance cloud-computing environment of GEE made it possible to 

develop a gridded model for the entire nation within minutes, a task that would be computationally 

intensive and time-consuming if duplicated in a desktop PC environment.  

 

(a) (b) 

Figure 2. (a) Results of 1000-m downscaled product compared to (b) provincial-level 
statistics. 

Figure 3 lists the RF spatial covariates in order of importance for June 2010. Population, 

temperature, vegetation cover, and precipitation were the most important variables, respectively, 

for describing the model, which coincides with epidemiological literature. The order of variable 

importance remained relatively consistent regardless of the chosen month and year. 
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Figure 3. Spatial covariates in order of importance to the June 2010 downscale model. 

Model validation. Figure 4 provides an example of model validation results for June 2010 using 

the spatial aggregation technique described in Step 8 of the methodology summary. Grid cell 

values of predicted disease incident rates were averaged within each administrative boundary and 

compared to the observed incidence rate for that given province. The absolute minimum and 

maximum difference between observed and downscaled data were 0.92 and 16.6 with the root 

mean square error (RMSE) being 5.64. A scatterplot was also used to compare observed and 

downscaled values yielding an r2 of 0.87 (Figure 5). 
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Figure 4. Comparison between observed and downscaled output per province. 

 

Figure 5. Scatterplot of observed and downscaled output per province. 
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SUMMARY AND CONCLUSIONS: Spatial downscale models were developed for each month 

between 1998 and 2010, totaling 156 geospatial disease risk products. All models showed 

significant agreement between downscaled and observed data with the highest RMSE being 10.25 

and the lowest being 1.22. The lowest r2 for the scatterplot comparisons was .72 and the highest 

was .94.  

Random forests regression proved to be a high performing predictive algorithm that required little 

knowledge of machine-learning to achieve good results. However, the random forests model is not 

as easily interpretable as a traditional linear regression or classification/regression tree (CART), 

mainly due to the ensemble technique that creates hundreds of random, independent trees and 

combines the average into a single result.  

GEE provided a high-performance computing environment that met the standards required for 

tactical and operational standards. Gridded products at 1,000 m spatial resolution were processed 

at national-levels within minutes as opposed to several hours on a desktop environment. Further 

advantages to GEE include reduced local resources, both related to computation and data 

accessibility. The main disadvantage to GEE is that it’s not aimed at the novice user since it 

requires programming knowledge of either JavaScript or Python.  

Future contributing work to this study would explore the local spatio-temporal dynamics of the 

downscaled models. Dengue is known to be influenced by seasonal variables, such as precipitation 

and surface temperatures. Identifying strong temporal signals within a time-series could provide a 

further understanding of risk trends over time and possible associations with climate-disease 

teleconnections.  

In conclusion, this study improved coarse, administrative-level disease data by downscaling to a 

1000 m grid cell using random forests regression and spatial covariates. The generated output 

provides the level of tactical precision required to support Civil-Military Operations (CMO) 

targeting human health initiatives at a local scale. The output also provides a detailed geospatial 

product of disease risk that can be used to inform doctrine related to force health protection and 

force readiness during deployments.  
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APPENDIX: Distribution Map 

Spatially downscaled dengue risk map for Cambodia, June 2010. 
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